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Abstract 

Using the well mapped connectome of the nematode Caenorhabditis Elegans (C. Elegans) [1], I 
created a program that can be started three hundred and two times where each program inherits the 
attributes one of each of the worms 302 neurons and uses interprocess communications to connect 
the programs together in a manner similar to that of synaptic communication. Wrapping the entire 
connectome into a framework whereby sensory input can be derived from robotic sensors and 
directed to connectome sensory neurons, which in turn activates interneurons, which activate motor 
neurons, and muscle output can be accumulated to activate robotic motors, the simulated connectome 
and connectome framework allows for a biological simulation and study of the entire connectome 
from sensory input to muscular output.  

The experiments discussed in this paper show that the connectome alone is enough to give rise to 
experimental behaviors shown in the biological organism. This, in part, answers the age old question 
of whether the connectome alone can have value in determining animal phenotypes. 

 

1. Introduction 

Researchers, in general, have a tendency to model certain animal physiology and pathways focused 
on experimentation to discover truths about the underlying mechanisms that give rise to specific 
behaviors. Modeling and simulations are great tools and give us valuable insight into whether our 
observations and underlying theories of what causes those observations are true. However, modeling 
or simulating specific behaviors can lead to skewed interpretations by negating the organism as a 
whole. It is not always obvious that a small portion of an organism will deliver the same results when 
more components of the organism are added into the model.  

There have been a few models and simulations [2, 4, 5, 10, 13] conducted regarding the 
Caenorhabditis Elegans (C. Elegans) nematode but no one has yet created a simulation that 
encompasses the entire connectome. My C. Elegans connectome research involves individual 
programs, each representing one of the individual 302 neurons that make up the C. Elegans 
connectome. I label these 302 programs the Connectome Engine. To stimulate the sensory neurons in 
the connectome, and to read and assimilate the output of motor neurons, I added applications for this 
purpose I call the Connectome Framework. The Connectome Framework is the intermediate 
programs between the EV3 robot and the simulated C. Elegans connectome.   
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Figure 1. C Elegans Full Connectome 

Results show the connectome is very recursive whereby stimulated postsynaptic neurons often 
loopback to the calling presynaptic neuron and often at several layers deep; i.e. neuron A will 
stimulate neuron B which in turn stimulates neuron A (A -> B -> A), as well as, neuron A will 
stimulate neuron B which stimulates neuron C which stimulates neuron A (A -> B -> C -> A). With 
many recursive connections, once the simulation is running well, I observed that both connectome 
and motor output was continuous and on-going without further stimulation. It is my conjecture that 
the connectome would have continued running nearly forever if allowed and unimpeded. I have most 
often found in neuron circuit discussions the lack of recursive behavior and I believe this is one of the 
most missed opportunities at discovering how the connectome mechanism functions.  

There is an important distinction with the research this paper represents as opposed to most 
simulations in that the model is: 

Complete: The entire connectome is represented. However it should be noted that not all sensory 
organelles or inputs are in the model at this time. As an example, stretch receptors which could play 
an important role in C Elegans locomotion behaviors are not yet part of this model. 

Continuous: Like a “live” nervous system, the stimulation is continuous and active. Sensory input 
changes behavior and nothing more. 

Physical: The Connectome is connected to a real three-dimensional robot that is interacting with its 
environment in unpredictable ways.  

Individual: Each Neuron is represented by an individual program and like biological neurons, 
dendritic inputs and axonal outputs can only be given by the amount of stimulation consumed by the 
program (neuron). 

Analog: Since the Connectome is represented by individual programs, the time in which a 
stimulation of a program occurs is not fixed, and can happen and change as environmental factors 
evolve. 

Temporal: Stimulation changes over time as environmental factors change. Each program is set to 
only fire it’s axon as certain thresholds are met, and the program will zero out (depolarize) over time. 

 



Busbice  Connectome Simulation 

Timothy Busbice – InterIntelligence Research 3 

2. Materials and methods 

There are three parts that make up the connectome simulation: the robot which provides sensory 
input and motor output to read and navigate through the environment, a Connectome Framework that 
reads sensory data and writes motor values from the connectome engine, and the Connectome Engine 
that simulates each individual neuron of C. Elegans.   

2.1. Lego Mindstorm EV3 Robot  

In late 2012, Lego announced that it would be releasing a new Lego Mindstorms robot kit in the Fall 
of 2013. The new robotic kit would be called Lego Mindstorms EV3 [11] and was an upgrade from 
the previous model of Lego Mindstorms NXT2. The primary features that made the EV3 attractive 
for simulation research is that it is inexpensive (~$350 USD), the computer (or Brick) is a Linux 
based computer and that the user could communicate with the robot via Bluetooth and WiFi 
communications.  

Having purchased a prerelease, educational version of the EV3 in early August, 2013, allowed me to 
build a simple robot that could mimic some sensory inputs of the C Elegans nematode. The EV3, like 
its predecessors, has limited sensory inputs (Four total) and motor outputs (Four total). I decided on 
three touch sensors and one food sensor simulation. The robot is comprised of a left and right body 
touch sensor, a sonar or nose touch sensor and I use sound to simulate the presence of food. Each of 
these sensors stimulate specific sensory neurons of the connectome. I attached two motors to the EV3 
on either side to simulate the right and left body movement of C Elegans. 

 

Figure 2. Lego Mindstorms EV3 Robot 

2.2 Connectome Framework 

In order to interact with the robot I created two programs:  an Input program that reads the sensors on 
the robot and stimulates the appropriate neurons when specific thresholds are met, and an Output 
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program that accumulates stimuli from motor neurons and in turn sends the amount of power to be 
applied to each of the two motors. These two programs are the intermediary applications between the 
robot and the connectome.  

2.2.1 Sensory Input Program 
 

The Sensory Input Program sets up a WiFi connection with the EV3 robot via a software product I 

use called Monobrick (http://www.monobrick.dk) [12] that allows me to read sensory information. A 

Timer control is used to poll the sensors every 100 milliseconds. The two touch sensors (Anterior and 

Posterior) have a very simple input of either “On” or “Off”. If a touch sensor is pushed in, the sensor 

sends, and the input program reads, an “On”. If the button on the sensor is out (not pushed in), the 

sensor sends, and the input program reads, “Off”. I use the sonar sensor to simulate a nose touch by 

reading the number of centimeters detected between the robot and an object in front of the sensor. 

Currently, I have the limit set to within 20 centimeters of an object; i.e. if the distance is greater than 

20 centimeters, the sensor will be ignored, if 20 centimeters or less, nose touch sensory neurons are 

stimulated. Food (chemosensory) sensation is activated by a sound sensor. I use a threshold of 40 

decibels to start. If a sound is introduced greater than 40 decibels, food presence is simulated by 

activating the appropriate sensory neurons. This threshold can be changed on the fly by changing the 

value on the input program. Likewise, the neurons that will be stimulated when a sensor threshold is 

met can be changed on the fly as well. Currently, I have set up the following neurons to be stimulated 

when thresholds are met[7]: 

Anterior harsh body touch: FLPL, FLPR, BDUL, BDUR and SDQR 

Posterior harsh body touch: PVDL, PVDR, PVCL, and PVCR  

Nose touch (sonar): ASHL, ASHR, FLPL, FLPR, OLQDL, OLQDR, OLQVL, OLQVR 

Food (sound): ADFL, ADFR, ASGL, ASGR, ASIL, ASIR, ASJL, ASJR, AWCL, AWCR, AWAL 

and AWAR 

Each stimulation of the neurons listed, sends a default value set in the input program data grid to each 

of the individual programs that represent these neurons in the connectome. These values can be 

adjusted to create a higher value sensation. 
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The input program displays as: 

 

Figure 3. Sensory Input Program. The Input program reads the robot sensors and activates the Sensory Neurons 

that are associated to each sensor. 

Whereas  

 sets the IP Address where the Connectome Engine resides. 

 sets the sound threshold. The user can change this value at any time and the 

sensitivity will increase or decrease for food stimulation dependent on this value. 
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The data grids above list the sensory neurons that will be activated by each sensor once the threshold 

is met or exceeded. These neurons are listed in a data grid and can be changed at will. The clear and 

reset buttons at the bottom of each grid will clear the grid or delete all neurons. Reset will restore the 

defaults. The Send button allows us to send the weighted value associated to the neurons listed in the 

grid on demand. This is useful if the researcher wishes to stimulate food neurons without having to 

make a lot of noise.  

The buttons at the top and middle have specific functions: 

“Timer On/Off” allows the researcher to start or stop polling of the sensors. 

“Clear” just clears the status box to the right. 

“Send Poison” sends a weight of -99999 to all the neurons in the connectome which tells the neuron 

to kill itself. This is used to stop the connectome very quickly rather than stopping 300 programs 

Connectome Engine 
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individually. 

“Test Sensors” simply reads the sensors on demand and displays the results in the status box. 

“Exit” ends the Input program. 

 is a special condition that allows the researcher to send a weighted value of one (1) to 

the neurons listed in the two textboxes below it. I created and used this for the neuromechanical 

simulation where I only need to stimulate these two neurons to activate muscle circuits (Gait modulation 

in C.elegans: an integrated neuromechanical model (2012) Jordan H. Boyle, Stefano Berri and Netta Cohen) 

is the status box that shows whatever activity is going on in the Input program. 

As a sensor is activated, the sensor and value is displayed here. 

 

2.2.2 Motor Output Program 

The Output program captures motor neuron outputs and displays the values in a matrix whereby each 
cell of the matrix represents a body muscle of C Elegans [6]. Muscles 7-24 (body muscles as opposed 
to head muscles) are accumulated into a value of either left or right, and the value is sent to the 
respective motor on the robot. The Researcher can set a maximum motor output whereas a motor is 
running at full speed when its value is set to 100. This is usually too fast on smooth terrain so I 
default the max value to 20 but this can be changed at any time and on the fly. The value of 20 for 
motor speed represents the condition whereas if the accumulated value exceeds 20, the output 
program will reset the value to 20. The output program communicates to the robot using Bluetooth 
communications and the Monobrick API.  
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The Output program displays as: 

 

 

Corresponding C Elegans Body Muscles  

Figure 4. Output Program. The Output program receives all motor output weights from the motor neurons, 

accumulates into individual cells that represents a body muscle of C Elegans and the right and left accumulated weights 
are summarized and the summarized right and left values are sent to the robot motors. 

Viewing the matrix, the left body muscles are represented on the left as MDL01 – MDL24, MVL01-
MVL23 (note although MVL24 shows as a cell in the output program, this muscle does not exist in 
the worm) and the right body muscles are represented on the right as MDR01-MDR24, MVR01-
MVR24. The values (the picture shows Zeros) will change as these muscles are individually 
stimulated. The labels at the top, LT and RT, display the accumulated values.  

Textboxes are as follows: 

“Threshold” is the number of seconds an accumulation of muscle stimuli can be dormant before the 
accumulator is set to zero (0) or depolarized. 

“Port” is the receiving port for UDP (User Datagram Protocol) communications from the motor 
neurons.  
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“Speed Throttle” is the maximum speed the Researcher wants to allow the robot to run. Twenty is the 
default and represents 20% of full motor speed. 

Buttons are as follows: 

Under Test Connection, there are two buttons: “^” and “S”. These buttons allow the user to move the 
robot forward (^) and to stop (S) the robot. This makes sure the Bluetooth communications is 
working. 

“STOP” forces the robot to stop and disconnects any further comminications. 

“ZERO” simply forces the matrix values to zero (0). 

2.3 The Connectome Engine 

The Connectome itself is comprised of 300 individual programs that make up the C Elegans 
connectome. There are 300 because no other neuron has any documented connections to CANL and 
CANR so I do not activate these two neurons. I created a startup program, RunConnectome.exe, that 
reads a local Microsoft SQL 2012 database that contains the name and port of each individual 
neuron, the neurons and/or muscles that it connects too and the weighted value determined by the 
number of connections the pre-synaptic neuron has to the post-synaptic neurons. 
RunConnectome.exe starts each program (neuron) based on these values. Each neuron program 
communicates with its linked neurons using UDP (User Datagram Protocol). UDP uses the port and 
IP address of the program it wishes to communicate with and sends the weighted value to the 
program(s) when a threshold is met of accumulated values. 
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Figure 5. The flow of the individual neuron program. 
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The single neuron is assigned a Socket or Port number which identifies 
the Neuron for the User Datagram Protocol (UDP). This image shows the 
Neuron AVAR is assigned port 11054, has just received a value of “15” 
and when its axon fires, it will send a value of 1 to ADER (port 11003), a 
value 1 to AS1, another value of 1 to AS1 (two connections to the same 
neuron represent a synaptic junction and a gap junction). Respective 
values will be sent to AS10 = 1 and 1, AS11 = 6, AS2 = 2, AS3 = 1 and 1, 
and AS4 = 1.  

Figure 6: Single Neuron Program. 300 of these programs are started, each representing one of the C Elegans 

neurons, which comprise the Connectome Engine. 

Each neuron program must accumulate a value greater than Fifteen (15) before the threshold is 
exceeded and the Axon fires; i.e. the program sends values to all the neuron programs it connects too. 
In addition, there is a timer control that triggers every 200ms and if there is no input activity in that 
200ms, the accumulation counter is set to zero (0). This simulates the action potential of the neuron. 

 

Figure 7. Just five out of the three hundred two neurons that demonstrate a high degree of recursion. 

The diagram above shows just five (5) of the neurons as they are being activated. The red links show 
the complexity of the connectome and the recursive structure. Note that AVAL stimulates AS10 
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which in turn stimulates AVAL. 

 

 

 

Figure 8. Overall, the entire process from and to the robot to the Connectome Framework. 

Each simulated neuron also has a built-in recording function that can be set to record each axon firing 
into a data table that tracks when a synapse is fired and the weight that was sent to that neuron. I use 
this data later to do a raster plots and analyze the Connectome processing. 

 

3. Results 

 

In general, the EV3 Robot using the Connectome Framework behaved in very similar ways to 
the behaviors observed in the biological C. Elegans. On the most simplest of terms, stimulation 
of food sensory neurons caused the Robot to move forward. Stimulation of the Robot’s sonar 
which in turn stimulated nose touch neurons, caused the robot to stop forward motion, backup 
and then proceed forward, usually in a slightly skewed path. Touching the Anterior and 
Posterior harsh touch sensors cause the robot to either move forward (Anterior touch) or move 
backwards (Posterior touch). There is no programming to direct the robot to behave in any 
specific manner. Only the simulated connectome directs when the robot will move a motor 
forward, stop or move backwards. I believe this answers, at a very basic level, that the 
connectome (i.e. how a nervous system is wired) gives rise to phenotypes that we observe in 
animals.  
 
Repeating these experiments gave similar results each and every time. Again, noting that the C 
Elegans connectome is highly recursive and once the connectome gets to a sufficient 
stimulation, the connectome will continuously self-stimulate; i.e. a neuron (presynaptic) will 
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stimulate another set of neurons (postsynaptic) which in turn, many of the postsynaptic 
neurons, will stimulate the originating presynaptic neuron, creating loops of stimulation. It is 
determined, if left alone, the simulated C Elegans connectome or nervous system will run 
continuously forever without any further stimulation. Not unlike the biological brains of 
animals whereas brain activity is constantly observed even at states of the deepest 
unconsciousness.   
 
I carried out two well documented ablation experiments [2, 3] as well and obtained similar 
results outlined with the same experiments on the live animal when specific neurons are 
destroyed. 

3.1. Food or Sound Sensing 
 

As noted earlier, I used the sound sensor on the EV3 robot to act as a chemosensory organelle 

and stimulate several sensory neurons associated with the presence of food [14]. In the case of 

C Elegans, food is generally bacterium that it senses and eats in its natural environs. The 

sensory neurons I stimulated once the sound threshold is met or exceeded is ADFL, ADFR, 

ASGL, ASGR, ASIL, ASIR, ASJL, ASJR, AWCL, AWCR, AWAL and AWAR. 

The Input application allows the user to set a threshold which I default to 40 decibels. This 

means that the sound around the robot sound sensor has to be 40 or more decibels before the 

robot will send the weighted values to the chemosensory neurons. This number can be 

adjusted on the fly by simply changing the value on the Input application but I found that 40 

decibels seemed to be a good threshold in a normal, quiet environment. If the threshold is too 

low, the sound of the robot motors or normal, low level conversation can activate the sensor. At 

40 decibels, snapping fingers or whistling will activate the sensor and allow a controlled 

stimulation. Setting the decibel level too high makes it difficult to cause stimulation due to the 

need to make excessive, high pitch noise. 

Generally I found that stimulation of the food sensory neurons activated the connectome most 

effectively and started the robot to move in a forward direction.  

 

3.2. Sonar or Nose Touch Sensing 
 

I used the sonar sensor on the EV3 to simulate Nose Touch [15], a very sensitive region of C 

Elegans that will cause the nematode to stop and change direction when it comes upon 

obstacles. I set the sonar to activate once the robot comes within 20 centimeters of an object. I 

found 20 centimeters to be a good distance based upon forward momentum of the moving EV3. 

The sensory neurons I stimulated once the robot comes within 20cm of an object is ASHL, 

ASHR, FLPL, FLPR, OLQDL, OLQDR, OLQVL, OLQVR.   

Repeatedly, when the EV3 robot senses an object using the sonar sensor and the nose touch 

sensory neurons are stimulated, the robot motors will stop and reverse for a short distance, 
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one motor will activate to turn the robot slightly and the robot will continue in a forward 

motion. This one behavior is when I realized that the connectome was simulating the biological 

counterpart. There is no program to tell the robot to stop, reverse and move forward again at a 

skewed angle – this behavior is all being controlled by the simulated C Elegans connectome.  

3.3. Harsh Body Touch Sensing 
 

I used two touch sensors on the EV3 to simulate Body Touch, one for Anterior (towards the 

head) touch and one for posterior (towards the tail) touch [8, 9].  For quite a long time, I could 

get what is known as soft body touch to work fine whereas when a Touch Sensor on the robot is 

activated, the robot would usually reverse or change direction, but harsh body touch was not 

working as I would expect and I struggled to figure out why. In C elegans, harsh body touch 

displays a very strong reversal behavior in the worm.  

One day I was viewing a picture of the C Elegan’s nervous system and I realized that the 

neurons that I was stimulating for (posterior) harsh body touch PVDL and PVDR, had 

numerous dendritic layouts across the entire body wall of C Elegans.  

 

C Elegans Connectome = all Neurons 

I realized the only way to simulate this wide ranging neuron in my simple, one sensor model 

was to increase the synaptic weight. I changed these neuronal weights to Twenty (20) and 

harsh body touch became much more relevant. The robot would stop and reverse much more 

rapidly when I applied this greater weighted value. However, this seems practical, I am not 

pleased by its simplicity and I feel the model is pulling away from a true simulation and more 

into the realm of model creation that forces the behavior rather than a more biological 

representation.  

3.4. Latency of the Connectome over time  

One issue above all must be mentioned to give a truthful review of this research. After running 
simulations for a short period of 8-10 minutes, it can be readily observed that UDP messaging 

C Elegans PVDL Neuron = Harsh Body 
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begins to stack, especially where there are highly recursive neuronal circuits. What this means 
is that a UDP message of a weighted value is sent to a postsynaptic neuronal program but 
because there are so many messages being sent to the postsynaptic neuron, the program 
cannot handle them all as fast as they are coming in. This becomes very evident when I send 
out a “poison” message to kill the neurons and there are sets of programs that do not stop 
because they are have so many other messages before the “poison” message, that it takes 
considerable time to process through these stacked messages before getting to the message 
that says stop.  

In defense of this the message stacking problem, having stacked weights can be a non-issue 
because the neuron program is continually being stimulated so the number of messages 
waiting is irrelevant to the stimulation itself. However, the downside, and one that I have 
observed, is when there is a high mix of positive and negative weighted values. Neuronal 
programs that do not have a high degree of stacked weighted values wating to be accumulated, 
can fire their axons in a timely basis but neuronal programs that have a highly stacked 
weighted queue of both positive and negative values will eventually become out of synch with 
the rest of the connectome. This is observed after long periods of stimulation, and the robot 
becomes more erratic in its behavior. 

To resolve this issue, and since the programs are IP and Port defined, I am looking into dividing 
the more active neurons onto their own computer system so they have more computing power 
and resources to keep up with the messaging demand. Originally I ran the Connectome Engine 
and Framework on the same computer but when I separated the Input/Output programs on 
one computer and the Connectome on another, the performance and throughput was very 
observable. Dividing the individual programs that make-up the connectome to different 
computers should give me an added performance throughput.  

4. Discussion 

Repeatedly, I can observe the robot behaving in a manner that I would expect given what we 
observe in the biological C Elegans with the organs we have replicated in the simulated, robot 
version of C Elegans. Having the ability to use a connectome within a mechanical entity opens 
up a great deal of possibilities. Although there is much network analysis yet to be done, this is 
potentially a gateway into greater insight of how nervous systems work.  The more precisely 
we can emulate a neuron, being able to engulf a precise neuron model into an entire 
connectome, makes exploration of nervous systems much easier, faster and perhaps more 
ethical than exploring biological animals.   

On another note, having working connectomes will allow us to explore autonomous robotics.  
Just this simple C Elegans connectome could easily be envisioned to extend to potential search 
and rescue robotics. Mimicking an animal that digs and searches for food in an environment 
similar to a collapse building could bring searching for survivors of such a catastrophe much 
easier and better, especially with additional chemo and oxygen sensors as with the real worm. 
Adding higher level connectomes such as fish, drosphila, mouse, and more, could amplify what 
my humble beginnings can obtain.  

Although I can show that simple neuronal connections can give rise to expected behaviors, 
there is much more to the C. Elegans (and any other animals) neuron than just neuronal 
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connections including, but not limited to, the difference between chemical and electrical 
connections, neuropeptides and the various peptides and innexins that create neuronal 
complexities at the cellular level. Just the differences in chemical (synapse) and electrical (gap 
junctions) warrants the possibility of two programs to shadow one another and represent a 
single neuron. Whether this evolves into multiple programs that together comprise a single 
neuron or a single application that encompasses all of the systems biology of a single neuron, 
we must continue to improve and add-in additional complexity to get a true representation in 
reverse engineering natural biology.  

In addition, as what I found regarding the Harsh Body touch (PVDL and PVDR neurons), the 
spatial aspect of the connectome is missing. At this time, other than the attempt I made raising 
the weighted values to activate the sensory neurons, I have no idea how this could be 
accomplished but I believe it is an important aspect of simulating a connectome. One avenue to 
review is perhaps the idea of throttling how weighted values are messaged whereas a long 
axon might be throttled to react slower than a short axonal connection. Computational 
Neuroscience might play a key role to resolve this issue. 

 
In a collaborative effort with Marusz Sasinski, we were able to create a Python version of the 

connectome that is time sequenced and not independent programs. The Python version used 

arrays and to create an illusion of recursion, we looped through the arrays at each step, 

incrementing the accumulated weight values and once the values exceeded a threshold, we 

would then fire that neuron (loop through the array and add weighted values), and zero the 

accumulated value for the presynaptic, firing neuron. I was able to connect this Python 

application, running on a Raspberry Pi computer to a modified Connectome Framework, and 

we again, observed behaviors in the robot that emulated the living nematode. The Python 

program, running on a Raspberry Pi computer worked very similar to the individual program 

simulation which moves us closer to the realization that the connectome alone is a key aspect 

to understanding a number of basic behaviors in a living organism. 

5.  More Information  

We wish to make most of this code available to any and all collaborators and are starting an 

open source project to hopefully propel this concept to even larger audiences. You can get on 

board to receive information and add to the discussion by joining the Google Group 

ocengine@googlegroups.com = Open Connectome Engine. We are currently working on a Git 

repository to house the software for download and collaboration and will be announcing where 

and how to get access to these files on the ocengine list. 

In addition, I have started a web site at http://www.connectomeengine.com where I hope to 

give information, post code and applications ready to use. Currently I am working on a web 

service that I hope anyone can plug into and use the connectome. 
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